
A GENERAL GEOMETRIC MODEL FOR PARAMETERIZING
DIFFRACTION MEASUREMENTS

JOEL VINCENT BERNIER

Abstract. A complete and general geometric model for parameterizing diffraction

measurements with one or more planar detectors is presented. It includes provisions for

describing both mono- and poly-chromatic schemes for collimated incident beams (i.e.

negligable beam divergence), although extensions to divergent sources are discussed.

Detectors are modeled as polygonal planar bodies, and their shapes and placements in the

reference frame are completely arbitrary. The mapping that takes an admissable reciprocal

lattice vector in the crystal frame to pixel coordinates in a specific detector frame is of the

form A(x) · x = y. Application to the rotation method, including the effects of

non-perpendicularith of the rotation axis to the incident beam wavevector, is presented in

detail.
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1. Background & Motivation

With many different measurement schemes, the rise of HEDM, and multi-panel

instruments, it bears merit to revisit a generic geometric model suitable for implementation

in data reduction software... standardization, blah, blah, blah

2. Coordinate Systems

A single-detector diffraction measurement schema is illustrated in Figure 1. For generality

we utilize five fundamental coordinate systems:

• the laboratory frame,
{
X̂lŶlẐl

}
;

• the beam frame,
{
X̂bŶbẐb

}
;

• the detector frame(s),
{
X̂dŶdẐd

}
i
;

• the sample frame,
{
X̂sŶsẐs

}
; and

• the crystal frame,
{
X̂cŶcẐc

}
.

2.1. Laboratory Frame. The laboratory frame is intended to provide a global reference

frame that is stationary during the measurement. The incident beam has a non-negligible

physical extent in the lab frame, typically possessing a rectangular or circular cross-section.

For clarity, we restricting our focus to sources that may be described using plane waves.

With regards to the geometric construction, it is useful to define the beam direction as the

unit incident wavevector, b̂ ≡ ki

‖ki‖
. The centroid of the beam cross-section is defined to

coincide with the origin of
{
X̂lŶlẐl

}
, labeled P0.

2.2. The Beam Frame. When working with the geometry of diffraction, it becomes very

useful to associate detector-relative cartesian coordinates – and diffraction vectors d̂ – with

a bragg angle, 2θ, and azimuth, η. Noting that the Bragg condition is axisymmetric about
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the incident wavevector, a natural frame in which represent these spherical angles has the

origin at the diffracting element, and incident beam aligned with one of the basis vectors.

In the present notation, the bragg angle (see Equation 17) is defined as

(1) 2θ ≡ arccos
(
b̂ · d̂

)
,

where d̂ is the unit vector representing the direction of the diffracted beam

d̂ ≡ P4− P3

‖P4− P3‖ .

To define an azimuth, a reference direction, ê, must be specified. The definition of a

reference azimuth vector is arbitrary, however ê and b̂ cannot be collinear. The standard

setting has [ê]l = [1 0 0]T . The components b̂ in the laboratory frame are parameterized by

spherical angles (φ, γ):

(2)
[
b̂
]
l
= −


sinφ cos γ

sinφ sin γ

cosφ

 .

The standard setting has φ = γ = 0. The basis vectors defining the beam frame in the

standard setting are

(3)
{
X̂bŶbẐb

}
=
[
ê, −b̂× ê, −b̂

]
.

The components of a unit diffraction vector in the beam frame are

(4)
[
d̂
]
b

=


sin 2θ cos η

sin 2θ sin η

− cos 2θ

 ,
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and the azimuth of a diffracted beam is obtained as

(5) η = arccos
(
ê ·
(
I− b̂⊗ b̂

)
· d̂
)
.

Lastly, the components of a reciprocal lattice vector, G, are simply

(6) [G]b =
2 sin θ

λ


cos η cos θ

sin η cos θ

sin θ


where λ is the X-ray wavelength.

2.3. Detector Frame. A typical detector element has a planar active area with a

rectangular shape. A complete instrument may contain several independent detectors with

unique orientations and placements in the lab frame. A cartesian coordinate system{
X̂dŶdẐd

}
is attached to each independent detector element as follows: the origin P1 is

coincident with the centroid of the active surface, and Ẑd represents the plane normal. The

X̂d,Ŷd directions are typically aligned with the horizontal and vertical pixel-relative

directions on each panel. The coordinates of points in each independent detector

coordinate system,
{
X̂dŶdẐd

}
are related to coordinated in

{
X̂lŶlẐl

}
via a simple affine

transformation:

[x]l = Rd · [x]d + [td]l(7)

where td = P1− P0 and the notation [x]l indicates the components of x in
{
X̂lŶlẐl

}
.

Because only planar detectors are considered, the components of a detector-relative point

are of the form [x]d = [x y 0].
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2.4. Sample Frame. The sample frame provides a basis in which to represent a uniquely

oriented and located specimen. For the arbitrarily defined sample-relative vector S,

coordinates in
{
X̂sŶsẐs

}
are connected to

{
X̂lŶlẐl

}
via the affine transformation

(8) [s]l = Rs · [s]s + [ts]l

where ts = P2− P0. In the case of the rotation method, this is frame is the oscillation

frame. Without loss of generality, the oscillation axis is fixed to Ŷs. It may be canted with

respect to Ŷl by the angle χ1. The oscillation angle itself is represented by ω. The full

model has a sufficient number of degrees of freedom to preclude the need for a third

rotational degree of freedom for
{
X̂sŶsẐs

}
.

2.5. Crystal Frame. The crystal frame represent a local RHON coordinate system

attached to the lattice of a single-crystal domain in the sample. In the context of far-field

HEDM, the origin of
{
X̂cŶcẐc

}
, labeled P3, represents the centroid of the crystallite. For

a crystal-relative vector c, the components are transformed as

[c]s = Rc · [c]c + [tc]s(9)

[c]l = Rs · Rc · [c]c + Rs · [tc]s + [ts]l(10)

where tc = P3− P2. The formulation of diffracted beam vectors for a given unit cell is

discussed in § 3.

1the canting angle χ is typically very small for an HEDM schema, although some special cases might require
it to be set to some non-zero value. Including this degree of freedom in the model also allows for it to be
quantified via calibration.
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ê

b̂

P0

X̂d

Ŷd
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ẐcĜ
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Figure 1. A single-detector diffraction schema illustrating the four funda-
mental coordinate systems and the 5 generic points P0-P4 used to create
the transfer function taking reciprocal lattice vector components to detector-
relative components. For completeness, the reciprocal lattice vector G and
bragg angle 2θ associated with P4 are shown. The azimuthal angle, η, of Ĝ
about b̂ is not shown; however, the reference azimuth is, denoted by the unit
vector ê.
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3. Diffraction

3.1. Convention for writing components of crystal lattice vectors. In order to

insert the geometry of diffraction into the coordinate system hierarchy described above, it

is necessary to etablish a convention for describing the crystal lattice. The crystal lattice

itself may be parameterized by its primitive vectors a, b, and c. They share a common

origin at a lattice site and are subject to the following conditions:

(11)

‖a‖ = a

‖b‖ = b

‖c‖ = c

1
bc
b · c = cosα

1
ca
c · a = cos β

1
ab
a · b = cos γ

The six scalar cell parameters {a, b, c, α, β, γ} represent a convenient parameterization of

the reference unit cell, which typically correspond to an unloaded state at a reference

temperature. Crystal symmetry operations (excluding triclinic) generate equivalences

among cell parameters; however once a crystal is deformed, the reference symmetry is

broken and all six parameters must be considered as independent. The treatment of

strained crystals in the context of the reference crystal symmetry is discussed in detail

below. For writing components of crystal-relative vectors and tensors in
{
X̂cŶcẐc

}
, a

convention must be chosen to register the lattice vectors. The convention employed herein

is consistent with that proposed by [? ]. Explicitly stated, a ‖ X̂c and (a× b) ‖ Ẑc, as

depicted in Figure 2.
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The reciprocal lattice, which forms a dual basis to the direct lattice, is a very useful

concept in diffraction. The reciprocal lattice vectors are defined2 as follows:

a∗ =
1

v
b× c(12)

b∗ =
1

v
c× a(13)

c∗ =
1

v
a× b(14)

where v = a · b× c represents the volume of the primitive cell. The change-of-basis matrix,

B, that takes vector components in the reciprocal lattice frame to the crystal frame is

formulated as

B =
[
a∗ b∗ c∗

]
c

(15)

=
1

v


bc sinα∗ sin β sin γ 0 0

−bc sinα∗ sin β cos γ ac sinα∗ sin β 0

−bc(cosα∗ sin β cos γ + cos β sin γ) ac cosα∗ sin β ab sin γ

 ,
where {a∗, b∗, c∗, α∗, β∗, γ∗} are the reciprocal lattice parameters defined analogously to the

direct lattice parameters in Figure 2 and Equation 11.

2this is the so-called “crystallographer’s convention” where the prefactor of 2π is omitted.
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X̂c ‖ a Ŷc

Ẑc ‖ c∗

b

c

α
β

γ

Figure 2. The convention for describing the reference (read: unstrained)

lattice has a ‖ X̂c and c∗ ‖ Ẑc. Note that a triclinic primitive cell is depicted
for generality. The crystal orientation, Rc, takes components in the crystal

frame,
{
X̂cŶcẐc

}
, to the sample frame,

{
X̂sŶsẐs

}
.

Assume that a reciprocal lattice vector, G, satisfies a bragg condition. The unit vector

aligned with its associated diffracted beam, d̂, is then

d̂ = R
(
π, Ĝ

)
·
(
−b̂
)

=
(

2Ĝ⊗ Ĝ− I
)
·
(
−b̂
)

=
(
I− 2Ĝ⊗ Ĝ

)
· b̂(16)

where Ĝ · b̂ = −λ
2
‖G‖ = − sin θ,(17)

d̂ · Ẑd < 0,(18)

Ĝ = G/‖G‖, and b̂ is the unit vector aligned with the beam propagation direction.

Equation 17 is the bragg condition for X-rays having wavelength λ, and Equation 18 is the
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geometric condition ensuring that d̂ can intersect the detector plane. Note that there is an

additional condition that must be satisfied in the instrument for P4 to be observable; it

must also lie within the physical extent of the detector element. Application of this

condition is, however, quite straightforward and not explicitly stated in this document.

3.2. Representing crystal orientation and strain. A reciprocal lattice vector, G, is

typically representend by its components in the reference (read: undistorted) reciprocal

lattice frame, [G]∗ = [h k l]. The change-of-basis matrix, B, that takes components in the

reciprocal lattice to
{
X̂cŶcẐc

}
was given by Equation 15 above (§ 3.1). The effects of

both finite distortion and rotation of a crystal lattice with respect to
{
X̂sŶsẐs

}
are

captured using a deformation gradient tensor, F, as presented in [? ]. The tensor F acts on

the direct lattice vectors, and takes undistorted lattice vectors in the reference crystal

frame,
{
X̂cŶcẐc

}
, to reoriented and distorted lattice vectors in the sample frame,{

X̂sŶsẐs

}
. Using the polar decomposition,

(19) F = VRc, ∀ V ∈ Sym3×3, Rc ∈ SO3,

where Rc is the crystal orientation and V is the “left” stretch tensor. ? ] have shown that

F−T = V−1Rc can be applied analogously to reciprocal lattice vector components written

in
{
X̂cŶcẐc

}
. Given the reciprocal lattice vector G, with components [G]∗ = [h k l] in the

reciprocal lattice frame, the fully distorted and orientend components in
{
X̂lŶlẐl

}
are
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then derived as

[G]l = Rs [G]s

= Rs

[
F−T

]
s
[G]c

= Rs

[
F−T

]
s
B [G]∗

= Rs

[
V−1

]
s
RcB [G]∗ ,(20)

The three crystal orientation degrees of freemdom are wrapped up in Rc, while the six that

represent strain are contained in V.

Functionally, the orientation degrees of freedom can be decoupled from the strain (and

position) degrees of freedom in the initial analysis. This “orientation indexing” procedure

essentially consists of testing discrete orientations R(φ,n), for a set of feasible G and

checking for intensity at the associated detector points P4. For the rotation method, the

oscillation angle ω must be calculated for each feasible G as well; this will be discussed in

§ 5.

4. Parametric ray-plane intersection and the transform function

The coordinates of the points P0− P4 (see Figure 1) in the lab frame are

[P0]l ≡
[
0 0 0

]
(21)

[P1]l = [td]l(22)

[P2]l = [ts]l(23)

[P3]l = Rs [tc]s + [ts]l(24)

[P4]l = Rd [x]d + [td]l(25)
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Using the parametric equations for a plane (Equation 26) and line (Equation 27), we may

obtain a system of equations linking d̂ and P4.

Ẑd · (P4− P1) = 0(26)

P4 = P3 + ud̂(27)

Substituting for P4 and rearranging to solve for the scale parameter u yields

Ẑd · (P3− P1 + ud̂) = 0

Ẑd · (P3− P1) = −uẐd · d̂

=⇒ u =
Ẑd · (P1− P3)

Ẑd · d̂
(28)

Finally, inserting this result into Equation 27 with some rearrangement yields

(29) [P4]d = RT
d ·

[P3− P1]l −
dot

([
Ẑd

]T
l
, [P3− P1]l

)
dot

([
Ẑd

]T
l
,
[
d̂
]
l

) [
d̂
]
l

 ,

where
[
d̂
]
l

is obtained from Equation 16 and Equation 20.
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5. Solving for the oscillation angle, ω

For a monochromatic schema using the rotation method, the action of the oscillation in a

canted configuration is represented by the rotation Rs where

Rs = R
(
χ, X̂l

)
R
(
ω, Ŷl

)
(30)

=


1 0 0

0 cosχ − sinχ

0 sinχ cosχ




cosω 0 sinω

0 1 0

− sinω 0 cosω



=


cosω 0 sinω

sinχ sinω cosχ − sinχ cosω

− cosχ sinω sinχ cosχ cosω

 .
From Equation 20 we have

(31) [G]s =
[
F−T

]
s
B [G]∗

By writing the bragg condition (Equation 17) in terms of lab-frame components by

multiplying by the normalized components
[
Ĝ
]
s

above by Rs leads to relation of the form

a sinω + b cosω = c(32)

≡ R sin (x+ α)(33)

where R ≡
√
a2 + b2, and α ≡ atan2(b, a),(34)



14 JOEL VINCENT BERNIER

and

a =
[
Ĝ2

]
s

[
b̂0

]
l
+ sinχ

[
Ĝ0

]
s

[
b̂1

]
l
− cosχ

[
Ĝ0

]
s

[
b̂2

]
l

(35)

b =
[
Ĝ0

]
s

[
b̂0

]
l
− sinχ

[
Ĝ2

]
s

[
b̂1

]
l
+ cosχ

[
Ĝ2

]
s

[
b̂2

]
l

(36)

c = − sin θ − cosχ
[
Ĝ1

]
s

[
b̂1

]
l
− sinχ

[
Ĝ1

]
s

[
b̂2

]
l

(37)

These yield the solutions

(38) ω =

 arcsin
(

c√
a2+b2

)
− α

π − arcsin
(

c√
a2+b2

)
− α

which are either unique (both sides of the diffraction cone), a double root (tangent to the

diffraction cone – typically not considered) or do not exist (| c√
a2+b2

| > 1, can’t intersect

diffraction cone).

6. Summary

The complete procedure for finding the detector coordinates of all reflections for a

specifically oriented, strained crystal at the the position P3 consists of the following

procedure:

(1) Generate [h k l] up to the relevant order (determined by geometry and wavelength

of the X-rays)

(2) Calculate the set of reciprocal lattice vector components in
{
X̂sŶsẐs

}
using

Equation 31

(3) Calculate the set of oscillation angles, (ω0, ω1), for each unique [h k l] using

Equation 38
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(4) Calculate the set of unit diffraction vector components in
{
X̂lŶlẐl

}
using

Equation 30, Equation 20, Equation 16 for each valid oscillation angle pair in

(ω0, ω1)

(5) Calculate [P4]d from Equation 29.

Appendix A. Tilt parameterization

A.1. Tait-Bryan angles. Passive convention.

Rd = R
(
ζ, Ẑl

)
R
(
ψ, Ŷl

)
R
(
φ, X̂l

)
(39)

=


cos ζ − sin ζ 0

sin ζ cos ζ 0

0 0 1




cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ




1 0 0

0 cosφ − sinφ

0 sinφ cosφ



=


cos ζ − sin ζ 0

sin ζ cos ζ 0

0 0 1




cosψ sinψ sinφ sinψ cosφ

0 cosφ − sinφ

− sinψ cosψ sinφ cosψ cosφ



=


cos ζ cosψ cos ζ sinψ sinφ− sin ζ cosφ cos ζ sinψ cosφ+ sin ζ sinφ

sin ζ cosψ sin ζ sinψ sinφ+ cos ζ cosφ sin ζ sinψ cosφ− cos ζ sinφ

− sinψ cosψ sinφ cosψ cosφ
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